If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+9q+6=0
a = 1; b = 9; c = +6;
Δ = b2-4ac
Δ = 92-4·1·6
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{57}}{2*1}=\frac{-9-\sqrt{57}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{57}}{2*1}=\frac{-9+\sqrt{57}}{2} $
| 5/4+7/2=3/2x+14 | | 5/4x-7/2=3/2x+14 | | 940=40x | | 2x-75=x-17 | | 4n+1×=64 | | 3/4x(5x-4)=1/2x(4x+3) | | -n+4=-8+2n | | 92=15x+32 | | 4y/2=116 | | 1=2+c/14 | | 9x+20=4x+140 | | 5/4x-9=3/2x-4 | | 40x/40=950/40 | | 10(x+7)=612 | | |w|+7=14 | | 4(2x+1=28-16 | | 4x+60=x+72 | | C-3-5-3c=c-3-c+5 | | 2x+15=x+27 | | 5x=-30x | | 2x+38=x+71 | | 6+238=3x+178 | | 4x+8=-2+9x | | 2x+108=10x+52 | | 3x6=9xX | | 7(4x+7)-7x=20-8x | | -1+5n=3(-n+13) | | x/3-11=-9 | | 8(3y+1)=6(4y+2) | | 3(x+4)-5=3x+7 | | 13x-9=7x+45 | | -9+x/7=-7 |